Perfect, Strongly Eutactic Lattices Are Periodic Extreme

نویسنده

  • ACHILL SCHÜRMANN
چکیده

We introduce a parameter space for periodic point sets, given as a union of m translates of a point lattice. In it we investigate the behavior of the sphere packing density function and derive sufficient conditions for local optimality. Using these criteria we prove that perfect, strongly eutactic lattices cannot be locally improved to yield a denser periodic sphere packing. This in particular implies that the densest known lattice sphere packings in dimension d ≤ 8 and d = 24 cannot locally be modified to yield a periodic sphere packing with greater density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On extreme forms in dimension 8

A theorem of Voronoi asserts that a lattice is extreme if and only if it is perfect and eutactic. Very recently the classification of the perfect forms in dimension 8 has been completed [5]. There are 10916 perfect lattices. Using methods of linear programming, we are able to identify those that are additionally eutactic. In lower dimensions almost all perfect lattices are also eutactic (for ex...

متن کامل

Lattices from tight equiangular frames

We consider the set of all linear combinations with integer coefficients of the vectors of a unit tight equiangular (k, n) frame and are interested in the question whether this set is a lattice, that is, a discrete additive subgroup of the k-dimensional Euclidean space. We show that this is not the case if the cosine of the angle of the frame is irrational. We also prove that the set is a latti...

متن کامل

Boris Venkov’s Theory of Lattices and Spherical Designs

Boris Venkov passed away on November 10, 2011, just 5 days before his 77th birthday. His death overshadowed the conference “Diophantine methods, lattices, and arithmetic theory of quadratic forms” November 13-18, 2011, at the BIRS in Banff (Canada), where his important contributions to the theory of lattices, modular forms and spherical designs played a central role. This article gives a short ...

متن کامل

Polyhedral truncations as eutactic transformations.

An eutactic star is a set of N vectors in Rn (N > n) that are projections of N orthogonal vectors in RN. First introduced in the context of regular polytopes, eutactic stars are particularly useful in the field of quasicrystals where a method to generate quasiperiodic tilings is by projecting higher-dimensional lattices. Here are defined the concepts of eutactic transformations (as mappings tha...

متن کامل

Spherical 2-Designs and Lattices from Abelian Groups

We consider lattices generated by finite Abelian groups. The main result says that such a lattice is strongly eutactic, which means the normalized minimal vectors of the lattice form a spherical 2-design, if and only if the group is of odd order or if it is a power of the group of order 2. This result also yields a criterion for the appropriately normalized minimal vectors to constitute a unifo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008